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A statistical modeling approach is proposed for use in searching
large microarray data sets for genes that have a transcriptional
response to a stimulus. The approach is unrestricted with respect
to the timing, magnitude or duration of the response, or the overall
abundance of the transcript. The statistical model makes an ac-
commodation for systematic heterogeneity in expression levels.
Corresponding data analyses provide gene-specific information,
and the approach provides a means for evaluating the statistical
significance of such information. To illustrate this strategy we have
derived a model to depict the profile expected for a periodically
transcribed gene and used it to look for budding yeast transcripts
that adhere to this profile. Using objective criteria, this method
identifies 81% of the known periodic transcripts and 1,088 genes,
which show significant periodicity in at least one of the three data
sets analyzed. However, only one-quarter of these genes show
significant oscillations in at least two data sets and can be classified
as periodic with high confidence. The method provides estimates
of the mean activation and deactivation times, induced and basal
expression levels, and statistical measures of the precision of these
estimates for each periodic transcript.

Advances in microarray technologies (1–5) have enabled
investigators to explore the dynamics of transcription on

a genomewide scale. The current challenge is to extract useful
and reliable information out of these large data sets. A
common, first approach is cluster analysis. The primary ob-
jective of cluster analysis is to group genes that have compa-
rable patterns of variation. This method is valuable for reduc-
ing the complexity of large data sets and for identifying
predominant patterns within the data (6). However, additional
methods are needed to extract information about individual
genes from these large data sets.

Toward these goals we consider a statistical method to
identify genes whose transcript profiles respond to a stimulus.
In general terms, this approach involves modeling the associ-
ation of a generic response with a specific experimental
variable, for example, timing, cell type, temperature, or drug
dosage, using a set of interpretable parameters. One objective
is to estimate pertinent parameters for individual transcripts,
with the goal of testing specific hypotheses concerning tran-
script response to the stimulus. If the statistical model provides
an adequate representation of the expression data for a
specific gene, then the corresponding model parameter esti-
mates can provide certain response characteristics for that
gene. For example, model parameters may describe the mag-
nitude, duration, or timing of the response. This modeling
strategy can be used for two group comparisons, where the
objective may be to identify genes that are differentially
expressed between normal and abnormal tissues, or in drug
discovery studies, where the objective may be to identify
transcripts affected by drug dosage.

To demonstrate the utility of this approach, we formulated a
model for identifying periodically transcribed genes of the
budding yeast Saccharomyces cerevisiae. In this case, the stimulus
is synchronous resumption of the cell cycle by releasing the cells
from a fixed arrest point. The response is a pulse of transcription,
and the key experimental variable is cell cycle timing (7–9).

Four synchronized cell cycle data sets have been generated
and made available for general exploration (8, 9). These large
data sets have been analyzed by visual inspection (8), Fourier
transform and hierarchical clustering (9), k-means (10) and QT
clustering (11), self-organizing maps (12), and singular value
decomposition (13, 14). Fourier transform analysis of three data
sets, where the threshold for periodicity was based on the
behavior of known periodic genes, led to a report that there are
800 periodically transcribed genes (9). Later, k-means clustering
was applied to one data set, and five periodic clusters with 524
members were identified (10). However, only 330 genes were
identified by both approaches. For comparison, we have used
statistical modeling to look for regularly oscillating profiles
within these large data sets. This approach complements clus-
tering methods in that rather than seeking to group together
genes having similar expression patterns it aims to directly
identify transcripts affected by a given stimulus and to provide
specific information regarding individual response patterns. As
amplified below, the method also allows for heterogeneity in
response patterns among samples, with expected robustness of
inferences on response parameters to certain types of experi-
mental variations.

Methods
A Modeling Framework. Let Yjk denote the expression level for the
jth gene in the kth sample in a stimulus experiment. The number,
J, of genes studied often will be of high dimension, typically in
the thousands, while the number of samples, K, may be com-
paratively few. A standard statistical approach would relate the
mean of the vector response, Y9k 5 (Y1k, . . . , YJk) for the kth
sample to a corresponding vector of p covariates xk 5 (x1k, . . . ,
xpk) that codes the stimulus categories and possible other
characteristics of the kth sample using a regression function, say
D(xk, u)9 5 {D1k(xk, u), . . . , DJk(xk, u)}, where u9 5 (u1, . . . ,
uJ) may include gene-specific and other parameters and is to be
estimated. Under such a regression model the elements of the
vector of differences Yk 2 Dk(xk, u) have mean zero, but can be
expected to be correlated due, for example, to variations in
mRNA extraction, amplification, and assessment among sam-
ples. Such variations can be acknowledged by introducing addi-
tional parameters, which we refer to as heterogeneity parameters
into the model for the mean of Yk. In fact, for sample k, one can
introduce both an additive heterogeneity parameter dk and a
multiplicative heterogeneity parameter lk giving a model, dk 1
lkDjk(xk, u) for the expectation of Yjk. The average of the dks and
lks are restricted to be zero and one, respectively, to avoid
possible identifiability problems relative to the regression pa-
rameters u of primary interest. The high dimension of Yk will
allow those heterogeneity parameters to be precisely estimated
in many applications. The inclusion of these parameters may
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make plausible an assumption that Yk given xk are nearly
independent, especially for in vitro experiments. Under such an
assumption, one can simplify the modeling and numerical pro-
cedure for the estimation of u.

Following the approach described in the seminal statistical
paper by Liang and Zeger (15), estimation of the mean param-
eter vector h9 5 {d1, . . . , dK, l1, . . . , lK, u} can proceed by
specifying a ‘‘working’’ covariance matrix for Yk, which under the
above independence assumption will be approximated by a
diagonal matrix, written as Vk 5 diag(v1

2, . . . , vJ
2), so that the

expression level for each of the J genes is allowed to have a
distinct variance.

Estimates of the vector of mean parameters h can now be
estimated as ĥ9 5 {d̂1, . . . , d̂K, l̂1, . . . , l̂K, û}, a solution to the
estimating equation,

O
k 5 1

K

Dk
9 V̂k

21@Yk 2 dk1 2 lkDk~xk, u!# 5 0, [1]

where Dk is the matrix of partial derivatives of the mean of Yk

with respect to the parameter h, V̂k denotes Vk with each vj
2

replaced by a consistent estimate v̂j
2, and 1 denotes a column

vector of ones of length J. Under the above modeling assump-
tions, ĥ will be approximately jointly normally distributed pro-
vided both J and K are large, and the variance of ĥ can be
consistently estimated (as J and K become large) by a standard
sandwich formula (15, 16).

The mean parameter estimation procedure just outlined is
expected to be useful in various types of microarray data sets. It
will allow the estimation of meaningful gene-specific parameters
to characterize expression levels in response to a stimulus, and,
in that sense, is complementary to cluster analysis that seeks to
group genes having similar expression patterns, with less em-
phasis on pattern characteristics. For example, in the context of
comparing the expression patterns between diseased and non-
diseased tissues, one may define a binary indicator xk that takes
value zero for nondiseased tissue samples and one for diseased
tissue samples, and specify a regression function, Djk(xk, u) 5
uj0 1 uj1xk, under which the jth gene would be differentially
expressed between normal and abnormal tissues, whenever uj1 Þ
0. The regression variable xk also could be expanded to allow the
regression function to depend on other measured characteristics
of the kth sample (or the kth study subject). Similarly, in a study
of variations of expression over time one would define xk 5 tk,
the timing of the kth sample to be gathered, and one can choose
a linear or other functional form to model the regression
function Djk(xk, u).

In the remainder of this paper we focus on the specific setting
of transcript response patterns when cells are released from cell
cycle arrest. Our particular interest will be the identification of
genes having periodic expression level changes over multiple cell
cycles. A key data analysis challenge relates to the possibility of
a single nonoscillating pulse of transcription for some genes,
after the resumption of cell cycling.

Modeling Periodic Transcription. Consider a synchronized experi-
ment to identify mRNAs that are transcribed once per cell cycle.
Suppose that when activated, the jth mRNA reaches an elevated
value (aj 1 bj) and when deactivated it falls to a basal expression
level (aj) (Fig. 1). Naturally, bj is interpreted as the difference
between averaged peak and trough expression levels. Consider-
ing multiple copies of the jth mRNA, transcribed and dissipated
at consecutive times in multiple cells with imperfect synchroni-
zation, the mean expression level of the jth transcript at the time
tk may be modeled as:

mj~tk! 5 dk 1 lkHaj 1 bjF O
c $ 0

fScQ 1 jj 2 t*k
sk D

2 fScQ 1 zj 2 t*k
sk DGJ ,

in which j 5 1, 2, . . . , J and k 5 1, 2, . . . , K for all J transcripts
at all K time points, where zj, jj are the activation and deacti-
vation times for the jth gene, respectively, t*k 5 tk 1 t, where t
denotes the difference of actual cell cycle timing and observed
timing and is typically known as phase, Q is the cell cycle span,
and the summation is over multiple cell cycles, c 5 0, 1, 2, . . . .
The standard deviation, sk, depicts the variation of ‘‘true’’
cell-specific timings around tk, which we assume to follow a
normal distribution with mean tk, resulting in the cumulative
normal distribution function f(.) in the mean model. Also, dk, lk
are the additive and multiplicative heterogeneity parameters for
the kth sample as described above, and here xk 5 tk. The above
single-pulse model (SPM) specifies a model for the mean
expression of each gene as the cell cycle proceeds. Gene-specific

Fig. 1. The basic assumption of the SPM is that a cell cycle-regulated tran-
script will be transcribed at one invariant time and will be dissipated at a
subsequent time during the cell cycle. (A) For example, we consider a single
transcript that is activated at (z 5 109) and deactivated at (j 5 559) during two
consecutive cell cycles of length (Q 5 809) from a basal (a 5 0) to an induced
(a 1 b 5 1) level of expression. (B) In a typical synchrony experiment, multiple
transcripts are made per cell and RNA is harvested from many cells. These cells
are not perfectly synchronized and the synchrony deteriorates with time,
leading to attenuation of simple pulses (dashed line) into smooth peaks
(dotted line) that dampen out with time (solid line). In the example shown, the
ages of cells vary from a standard deviation of 3 to 19 min. (C) The expression
values obtained (dots) are subject to both additive and multiplicative heter-
ogeneity as well as additional variability beyond what has been modeled, and
the differences of which are known as residuals. Using these residuals, we
estimate their standard deviation and evaluate the significance of the pulse
height in relation to this standard deviation via the Z scores.
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activation and deactivation times as well as the background and
elevated expression levels are estimated for each gene. SPM also
allows for variation between samples, for the fact that the
synchrony is imperfect and, as described below, for the synchrony
to deteriorate over time (Fig. 1). Further detail on the devel-
opment of the SPM is given in the Appendix, which is published
as supplemental material on the PNAS web site, www.pnas.org.
The resulting mean expression model has been shown visually to
reproduce the profiles observed for periodic transcripts mea-
sured by conventional means (17).

The SPM described above can be applied by using the mean
model estimation procedure outlined above. To simplify numer-
ical aspects we have used a multistage procedure: (i) heteroge-
neity parameters, (dk, lk), k 5 1, . . . , K, are estimated by using
all genes when the pulse heights are set to zero, (ii) the cell cycle
span, Q, is estimated by using a group of known cell cycle genes
under a pulse model, (iii) the synchronization variability, sk, k 5
1, . . . , K, is estimated by using the same group of known genes,
and (iv) gene-specific parameters (aj, bj, zj, jj), j 5 1, . . . , J, are
estimated while other estimated parameters are treated as fixed
at their estimated values. Although a simultaneous estimation
approach using the estimating Eq. 1 would be preferable, the
impact on estimation of the gene-specific parameters of their
variance estimates is likely to be minimal as gene-specific
parameters are weakly correlated with other parameters. Fixing
the cell cycle span and sample-specific parameters allows a
separate simple calculation of the gene-specific parameter esti-
mates, and of their variance estimates, for each of the J genes.
Further detail on these calculations is given in the Appendix.

To test the fit of the SPM we introduced additional polynomial
functions of time in the mean model and tested the hypothesis
that the polynomial coefficients were identically zero. Specifi-
cally, the SPM is augmented and written as

m̃j~tk! 5 mj~tk! 1 gj1tk 1 gj2tk
2 1 gj3tk

3,

allowing a departure from the SPM. A score-type test statistic for
(gj1, gj2, gj3) 5 (0, 0, 0) is then constructed using the asymptotic
normal theory described above. This score statistic, xj

2, will have
an approximate chi-square distribution with three degrees of
freedom under the SPM model, for sufficiently large J and K. We
choose 11.3, the 1% upper percentage of this chi-square distri-
bution to identify genes with patterns that depart significantly
from the SPM. For the cdc28 data set, for example, only 262
genes give test statistics that exceeded the critical value. Note
that other deviations than those polynomial terms could be
specified but are not pursued here.

For those genes for which the expression pattern does not
depart significantly from SPM, we estimate activation time (zj),
deactivation time (jj), basal expression level (aj), and elevation
in expression level during the interval (bj), along with their
estimated standard deviations. Under the SPM, expression levels
are cell cycle regulated if and only if bj Þ 0. We choose a critical
value of 5 for the absolute value of each Zj, the ratio of the
estimate of bj to its estimated standard deviation, to reject the
null hypothesis. This value, far in the tail of normal distribution,
is expected to preserve a genomewide significance level of about
0.3% (two-sided) even with as many as 6,000 genes under study.
Some of genes that showed evidence of departure from SPM also
may have expression patterns that vary with the cell cycle. One
could test bj 5 0 also for those genes in the context of the
augmented mean model, m̃j(tk), described above, though the
interpretation of such a test would be conditional on the
adequacy of the augmented model.

Nature of the Data. Three data sets were used in this analysis. The
cdc28 data set was generated by Cho et al. (8), and synchrony was
established by using a temperature-sensitive cdc28 mutation to

reversibly arrest cells in G1. Oligonucleotide arrays (Affymetrix,
Santa Clara, CA) were hybridized to fluorescently labeled
cDNAs made from each sample, and the absolute fluorescence
intensity values are assumed to be proportional to the amounts
of each transcript in each target sample (7). These data were
downloaded from http:yygenomics.stanford.edu. The two other
sets of data (alpha factor and cdc15) were generated by Spellman
et al. (9) using an alpha factor-mediated G1 arrest and a
temperature-sensitive cdc15 mutation to induce a reversible
M-phase arrest, respectively. In this case, f luorescently labeled
cDNAs were made from RNA from each time point and a
second fluorescent dye was used to label cDNA made from an
asynchronous control culture. Control and test cDNAs were
mixed and hybridized to arrays of PCR-amplified yeast ORFs.
Fluorescence intensity values of both dyes were measured, and
logarithmic ratios of test versus control values were generated.
Obtained ratios are assumed to approximate the corresponding
true ratios of test versus control mRNA levels (9). These data
and the cdc28 data, rescaled to mimic the ratio data, were
accessed from the public domain site http:yycellcycle-
www.stanford.edu. Our results are based on the analysis of these
data sets and as such will be influenced by all sources of variation
involved in the preparation and processing of these arrayed
samples.

Results and Discussion
The primary assumptions of SPM are that cell cycle-regulated
transcripts will peak only once per cycle and that these pulses
occur at invariant times in consecutive cycles. SPM includes
terms that enable additive and multiplicative heterogeneity
across samples to be accommodated. Fig. 2 shows additive
heterogeneity estimates for each data set. Additive heterogene-
ity is minimal when logarithmic ratios are used. When the
absolute intensity is considered for the cdc28 data set, the
additive heterogeneity is most evident at the 90-min time point.
This confirms the concern over this particular time point (8) and
provides a means of correcting for its heterogeneity.

We estimated cell cycle span for each data set by using a set
of 104 known cell cycle-regulated genes and profiling over a
range of possible cell cycle spans (see Appendix). As expected,
the cycle span differs for each synchrony method. Cycle spans for
the alpha factor and cdc15 data sets show bimodal distributions
(Fig. 2). These may be due to recovery artifacts that differentially
affect the first cycle and alter the timing of a subset of the
transcripts. We have used the estimated cell cycle span that
minimizes a certain weighted sum of squares, giving a value of
58 min for the alpha factor synchrony, 115 for the cdc15 cells, and
85 for the cdc28 culture. Fig. 2 also shows the estimated standard
deviations associated with loss of synchrony over time. Once
these values have been obtained, the xj

2 values are calculated for
the jth gene for j 5 1, . . . , J, and gene-specific parameters are
estimated for all genes having transcription patterns consistent
with the SPM (i.e., xj

2 values less than 11.3). Gene-specific
parameters include the mean activation and deactivation times
and the basal and elevated levels.

Fig. 3 shows the microarray data (solid lines) for five periodic
genes and the fitted SPM to these profiles (dotted lines). Clearly,
the model closely approximates the profile of the data and
provides mean activation and deactivation times (in brackets)
that are consistent with the patterns observed. The Z values for
these oscillations vary from about 18 for RFA1 in the cdc15 data
set to about 3.5 for MCM3 in the alpha factor data set. The fact
that the periodic behavior of MCM3 is still evident gives us
confidence that we have set a sufficiently conservative threshold
for each Zj. The top three transcripts have been classified as
G1-specific, MCB-regulated genes (9). However, the PDS1 pulse
is delayed compared to the other two. RFA1 and CLB6 are
activated at about the same time, but the pulse of CLB6 mRNA
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is shorter lived. These differences are reflected in the activation
and deactivation times calculated for each gene by SPM and can
be used to identify coordinately regulated transcripts.

Identification of Cell Cycle-Regulated Transcripts Using SPM on the
cdc28 Data Set. A total of 607 genes met SPM thresholds for
periodicity (i.e., uZju value of 5 or greater) using absolute
fluorescence intensity measurements directly from the cdc28
data (8). We obtained about the same number of genes by using
either the logarithm of the intensity or the logarithmic ratios of
intensities as generated by Spellman et al. (1, 2, 9). However, only
about 500 genes were identified in all three analyses. Thus, any
single data transformation may miss about 20% of the potential
positives, due to Z values that are close to our threshold. In all
subsequent analysis, we have used logarithmic ratios of the cdc28
data to be consistent with the alpha factor and cdc15 data.

Lists of cell cycle-regulated genes in the cdc28 data set have
been compiled by visual inspection (8) and k-means clustering
(10). SPM analysis confirms a majority of these assignments and
identifies many more candidate oscillating transcripts. The ap-
plication of the k-means approach provided by Tavezoie et al.
(10) used an initial filtering strategy to select the 3,000 yeast
genes, which showed the highest coefficient of variation over the
time course. Then, the iterative k-means procedure was used to

partition all 3,000 profiles into 30 clusters. The requirement that
all 3,000 profiles fit into one of 30 clusters necessitated the
assembly of large clusters with loosely correlated patterns of
expression. Five of these clusters had mean temporal profiles
that were clearly periodic over two cell cycles. However, only
about half of the profiles of the 524 cluster members exceeded
the thresholds for periodicity in SPM.

To see whether SPM could identify a tight cluster of periodic
genes, we computed the x2 and Z values for a cluster of G1-specific
transcripts which was assembled at three different thresholds by
Heyer et al. (11), using the QTiClust algorithm. In this case, we find
that all the tightest cluster members either exceed or come very
close to the threshold for periodicity set in SPM (Fig. 4 Top).
Inspection of the borderline cases indicates that they are likely to be
periodic and thus our Z value threshold is conservative. When the
cluster threshold is set lower, membership doubles and again nearly
all profiles are at the SPM threshold or well above it (Fig. 4 Middle).
However, as noted by Heyer et al. (11) further relaxation of the
cluster threshold to include 272 profiles leads to the inclusion of
many poorly matching patterns that also have low Z values by SPM
(Fig. 4 Bottom). This finding indicates the efficiency of both
approaches in identifying the most periodic transcripts. It also

Fig. 2. Parameters estimated for the data sets from synchronization by alpha
factor (A), cdc15 (B), and cdc28 (C for ratio data and D for absolute intensity)
data sets. The left column reflects the estimated additive heterogeneity for
each time point. The middle column indicates the estimated cell cycle span for
each synchrony as the profiled, weighted least square on a probability scale.
To facilitate visual inspection, we transformed this sum of squares to a
probability scale using exp[2L(Q)]y*exp[2L(Q)]. This would be a posterior
probability, if expression values followed the normal distribution. The right
column shows estimated standard deviations associated with deteriorating
synchrony.

Fig. 3. The fit of the SPM (dotted lines) to the microarray data (solid lines)
from three different synchronized cell cycles for five periodically transcribed
genes. The logarithmic ratio data versus time is plotted for the alpha factor
(Right), cdc15 (Center), and cdc28 (Left) synchronies. Beneath each plot, the
times of activation and deactivation for each transcript are shown in brackets,
followed by Z score and x2 statistic calculated under SPM, which indicate the
significance of the pulse height and deviation from SPM, respectively.
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illustrates the value of having two completely different methods of
analyzing the data to establish meaningful thresholds and charac-
terize the less robust response patterns.

Another feature of SPM is its estimation of gene-specific
parameters. Fig. 4 also shows how the distributions of activation
and deactivation times broaden as cluster membership increases.
This broadening indicates that in addition to containing nonpe-
riodic profiles, this group contains genes with different kinetics
of expression. Thus, SPM enables these clusters of similar
expression patterns to be further subdivided, depending on the
question of interest.

Using All the Data Sets to Estimate the Number of Periodic Genes.
One limitation of these cell cycle data sets is the small number
of samples and the lack of multiple measurements at any time
point, which makes the identification of false positives and false
negatives problematic. To mitigate this problem, we have used
SPM to identify periodic transcripts from the cdc28, cdc15, and
alpha factor data sets separately and then compared the results.
SPM identifies about twice as many periodic genes in the cdc28

data set as in either of the other two synchronies (Fig. 5), and
overall there are 1,088 genes that show significant oscillations in
at least one data set. Included among the 1,088 candidate
periodic genes identified by SPM are 81% of the 104 known
periodic genes. A total of 254 genes oscillate significantly in at
least two databases, which represents 4% of all genes, but
includes 46% of the known periodic genes. Thus, SPM identifies
the known periodic transcripts well above the level expected by
chance. Only one-quarter of the known periodic genes are
among the 71 genes that score as periodic in all three data sets.
A total of 834 genes appear periodic in only one data set and as
such further data collection will be required before this large
group of genes can be unambiguously classified. Complete lists
of the periodic transcripts identified by SPM are available at our
web site (www.fhcrc.orgylabsybreedenySPM).

Spellman et al. (9) used Fourier analysis of the combined data
from the same three data sets to identify periodic transcripts.
Using the known periodic genes as a guide for setting their
threshold, they estimated that 799 genes are periodic. Only 65%
of these genes also are picked up by SPM as being periodic in at
least one data set. This difference may be explained, in part, by
our conservative threshold for Z because reducing the threshold
value for Z to 4.0 enables 79% of these genes to be classified as
periodic in at least one data set.

Nearly all of the genes that exceed the threshold for periodicity
by SPM in at least two data sets also are recognized by the
method of Spellman et al. (9). Here again, as with clustering, the
most robust periodic patterns are identified by both methods.
However, there are 571 genes that appear to be periodic by SPM
criteria in at least one data set but are not classified as such by
Spellman et al. (9). As noted above, these cannot be unambig-
uously classified as periodic without further corroborating data.
They are either false negatives in two data sets or false positives
in one. Experimental variation is much more likely to result in
a nonperiodic pattern than it is to produce a smoothly oscillating
profile. With SPM, the peaks also must occur at the same time
in consecutive cell cycles and peaks and troughs are not recog-
nized if they are represented by a single point in the profile (see
Appendix). These restrictions should reduce the impact of noise
and result in a lower false positive error rate. However, we
cannot eliminate the impact of noise in the data and, with so few
data points to base these assignments upon, many remain

Fig. 4. Periodic transcripts that peak in the G1 phase of the cell cycle were
identified by Heyer et al. (11) using the QTiClust algorithm and varying the
cluster diameter threshold from ,0.3 (top 41 genes), to ,0.5 (83 genes), to
,1.2 (272 genes). The transcript profiles for members of these successively
larger G1 clusters were analyzed by SPM, and their Z and x2 values are plotted
(Left). The Z score and x2 thresholds of SPM are superimposed on these plots
to show that the proportion of these profiles that would be classified as
periodic (lower right quadrant of each plot). (Right) the distribution of mean
activation and deactivation times is plotted for each group. These parameter
estimates were calculated by SPM only for those profiles that exceed SPM
thresholds.

Fig. 5. Periodic transcripts identified by SPM with thresholds of uZu .5 and
x2 , 11.3 are depicted to show the extent of agreement between the three
data sets. Logarithmic ratio data provided by Spellman et al. (9) for each of the
three data sets was analyzed by SPM. The total number of periodic genes
identified in each data set is shown and is represented by a circle. Agreement
between data sets is indicated by the intersections of the circles. A total of 71
genes meet the SPM threshold for periodicity in all three data sets; 254 score
as periodic in at least two databases; 834 appear periodic in only one data set;
and 1,088 meet the SPM threshold in only one database. If we use an addi-
tional criterion of R2 . 0.6 to identify the profiles among these 1,088 for which
the model provides an explanation for 60% or more of the expression data
variation, we find 473 profiles. This list is available at our website (www.
fhcrc.orgylabsybreedenySPM).
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ambiguous. The 254 genes that score as periodic in two data sets
can be considered periodic with reasonably high confidence, but
they include only about half of the known periodic genes and as
such clearly underestimate the number. Unless more data are
generated, classification of the other transcripts will remain
ambiguous. In other words, in spite of the accumulation of nearly
one half million data points, we can identify only about half of
the periodic transcripts of budding yeast with high confidence.
These ambiguities, combined with the fact that statistical meth-
ods are most reliable when there is a large number of indepen-
dent samples, leads us to conclude that another data set,
traversing two full cell cycles and having closer time points will
be required to more completely identify and order the periodic
transcripts of this important model organism.

If even half of these 1,088 genes are actually periodic (see Fig.
5), they would comprise about 10% of all budding yeast genes,
which could be viewed as an enormous regulatory burden to the
cells, especially if there are many different ways in which this
regulation is accomplished. On the other hand, if there are only
20 different circuits that achieve this regulation and gene prod-
ucts have evolved into these limited expression patterns based on
the cell’s need for them, one could view it as a highly parsimo-
nious strategy for limiting the biosynthetic load on the cell.

Conclusion
In this report we use a statistical model (SPM) to identify and
characterize single pulses of transcription that occur at invariant

times in consecutive cell cycles. SPM is a specific application of
statistical modeling, but the basic strategy can be applied to any
large data set to identify genes undergoing a transcriptional
response to a stimulus. Due to its relative simplicity, statistical
modeling can be used to interrogate large data sets without using
additional filters to reduce the number of genes to be analyzed.
It also includes heterogeneity parameters that will tend to reduce
the impact of noise in the data sets. SPM identifies regularly
oscillating transcripts without regard to the abundance of the
transcript or the height or timing of the peak and provides
estimates of the mean time of activation and deactivation. These
values are only estimates, but they are unbiased under the
assumed SPM and can be considered defining characteristics of
individual genes. SPM also provides statistical measures of the
precision of the parameter estimates so that optimal groupings
can be made and subjected to further analysis. These features of
statistical modeling complement and augment the other meth-
ods used to analyze microarray data.
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